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Streamlining the Identification of Emerging Tasks in the O*NET System 
Using Natural Language Processing (NLP): Technical Summary 

Introduction 

Each year as part of the Human Resources Research Organization’s (HumRRO) Occupational 
Information Network (O*NET) Emerging Tasks project, HumRRO analysts review write-in task 
statements obtained from job incumbents or occupational experts to determine if new tasks 
should be added to O*NET. Specifically, HumRRO analysts review and make several 
judgments regarding each new write-in statement to see if it (or some variation on it) warrants 
inclusion as a new task (or a revision to an existing task) for a given O*NET Standard 
Occupational Classification Code (O*NET-SOC). Once a new task is developed, it is included in 
future O*NET Program data collection to gather relevance, importance, and frequency 
information from job incumbents and occupation experts (OEs). “Emerging Tasks” are also 
published within the O*NET Database (e.g., National Center for O*NET Development 2020a; 
2020c). The identification of emerging tasks augments other efforts by the O*NET Program to 
develop and maintain updated task information for O*NET-SOC occupations (Dierdorff & 
Norton, 2011; Green & Allen, 2020). 

Current Process 

For well over a decade, HumRRO has built a database of write-in task statements consisting of 
over 100,000 statements that have been labeled with respect to several key decisions analysts 
made about them during the review and rating process above, namely: 

1. Is the write-in statement an acceptable task?  

a. Write-in statements can be classified as unacceptable for a variety of reasons. 
For example, a write-in statement would not be acceptable if it is not actually a 
statement, is unclear, is too broad, describes a non-task characteristic of the job 
(e.g., knowledges, skills, abilities, citizenship behaviors, job requirements, work 
environment), or voices a complaint.  

b. HumRRO analysts classify unacceptable tasks into several categories, but that 
information is for informational purposes only and not relied upon in any 
subsequent step in the review and rating process. Thus, the most critical 
judgment for modeling purposes is whether a given write-in statement reflects an 
acceptable task or not. 

2. Is the acceptable task completely redundant with an existing task for a given O*NET-
SOC occupation?  

a. Additionally, HumRRO analysts classify acceptable tasks into three categories 
with respect to their similarity to an existing task statement from a given O*NET-
SOC: (a) completely redundant, (b) partially redundant, or (c) unique. 

3. Is there a sufficient number of acceptable-yet-not-completely-redundant tasks that are 
sufficiently similar to one another to warrant creation of a new task or revision to an 
existing task that captures a common theme among the similar tasks? 
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We provide examples of decisions 1 and 2 in Appendix A. All of the decisions above are made 
via the first seven steps of the eight-step write-in task statement analysis process summarized 
in Figure 1 (see Appendix B for a more detailed process schematic). Separate decisions are 
made for each write-in task statement provided for each O*NET-SOC included in a given yearly 
review-and-rating cycle. For example, each year, HumRRO is furnished with a list of write-in 
task statements for about 100 occupations (roughly 25 to 130 statements per occupation, with a 
median of 60). HumRRO analysts are assigned to a given occupation and go through the seven 
steps to make the decisions listed above for each write-in task statement in the occupation to 
which they were assigned. All of this review is done manually, facilitated by information 
presented to an analyst in a Microsoft Access application and judgments entered into that 
application. 

In light of advances in natural language processing (NLP) over the past decade, as well as the 
fact that HumRRO is in the unique and enviable state of having a fully labeled database of over 
100,000 write-in task statements with respect to the judgments above, we are in an unparalleled 
position to streamline the process of identifying emerging tasks while also potentially improving 
the quality and reliability of analysts’ decisions.  

 

Figure 1. Summary of current process for evaluating write-in statements. 
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Streamlining the Current Process Using NLP 

In this work, we developed new solutions to answer three critical questions about write-in 
statements:  

1. Is the write-in statement an acceptable task? (Step 3 of the current process) 
2. Is the statement completely redundant with an existing task for a given O*NET-SOC? 

(Step 4 of the current process) 
3. Are there enough unique statements that are sufficiently similar to one another to 

warrant the creation of a new task, or revision to an existing task? (Step 5 of the 
current process) 

 
We trained machine learning models to address questions 1 and 2 and we conducted a 
judgment exercise with current HumRRO analysts to address question 3. In this report, we 
describe our automated statement-processing strategies. We also offer a summary of how 
these advances helped to redesign the statement analysis process into a more streamlined 
workflow that makes use of both machine-generated predictions and human judgments. 

Data Preparation 

HumRRO constructed the database used in this research as part of the O*NET Emerging Task 
project work for well over a decade. The database includes 136,955 rows, each reflecting a 
write-in task statement. To prepare this database for analyses, we performed basic text cleaning 
on the write-in task statements (i.e., converted all text to lower case, converted symbols to text 
[e.g., “+” to “plus”, “&” to “and”], replaced all non-ASCII characters with a single white space, 
removed punctuation, removed extra white space, eliminated blank statements, performed 
spell-checking, and made spelling corrections) and created criterion variables for predictive 
modeling that corresponded to the first two key decisions noted earlier: 

• Key Decision 1: Acceptable Task (Yes vs. No) 

• Key Decision 2: Acceptable-Yet-Not-Completely Redundant vs. Acceptable-Yet-
Completely Redundant 

 
The main purpose for our spelling corrections was to ensure that as many words as possible 
could be mapped to our chosen pre-trained NLP model.1 We only made spelling corrections if (a) 
a word was flagged as misspelled by a spell-checking function, (b) the word was not included in 
our chosen pre-trained NLP model, and (c) the spell-checking function was able to offer a 
suggested spelling (if conditions a and b were satisfied but condition c was not, the misspelled 
text was omitted from its statement in our analyses). When we corrected the spelling of a word, 
we recorded the substitution along with a Jaro-Winkler string-distance coefficient expressing how 
much the substituted text differed from the original text. In later steps of our analyses, we used 

 
1 We use the term “spelling corrections” loosely here, as it includes both corrections of misspelled text (e.g., 
“abscences” was corrected to “absences”) and substitutions of text that are correctly spelled, but simply not 
recognized by the spell checker and not included in our pretrained NLP model. Examples of correctly 
spelled text that were substituted include hyphenated terms that were not included in our pretrained NLP 
model (e.g., there was no embedding for “acid-bath,” so we had to use the words “acid” and “bath” 
separately) and plural terms that were not included in our pretrained NLP model (e.g., our model did not 
include “alkalinities,” so we used “alkalinity” instead). True spelling corrections for misspelled words were 
only appliable to write-in statements, not published O*NET task statements. 
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these string-distance metrics as penalties and down-weighted our substitutions as a function of 
how much they differed from the original text they replaced. This allowed us to make use of as 
much text as possible while accounting for uncertainty in the assumptions that underly a 
programmatic spelling-correction procedure. For write-in statements, we replaced a total of 8,693 
words from 8,103 statements (5.9% of 136,389 non-null statements). For published tasks, we 
replaced a total of 507 words from 478 unique tasks (2.0% of 23,769 unique tasks). 

Embeddings 

The primary NLP-based portion of our analysis process used pre-trained word embeddings to 
quantitatively represent semantic meaning. A word embedding is a way of numerically 
expressing how words relate to each other so that one can essentially do math with words (e.g., 
king – man + woman = queen). By combining the embeddings for words that occur together in a 
sentence, one obtains a sentence-level aggregate embedding that gives a numeric 
approximation of the sentence’s semantic meaning. Of course, this is an incomplete way of 
accounting for meaning, as this process treats a sentence as a “bag of words” without regard to 
the context or order in which words are used. Despite this limitation, embeddings are a powerful 
tool for evaluating the similarity of text because they permit the detection of similar text involving 
different words. For example, the proclamations “I like cats” and “I enjoy felines” each have only 
the word “I” in common, but they are essentially identical in meaning; these statements appear 
quite different if we only consider the words they have in common, but their similarity can be 
revealed by analyzing word embeddings. 

Embeddings, regardless of whether they represent sentences or individual words, can be 
compared to each other to quantify the similarity between two pieces of text. The most common 
metric for expressing this similarity is a cosine, which indexes how close two vectors of 
embeddings are to each other. Cosines range from -1 (complete opposites) to +1 (completely 
identical), with 0 indicating no similarity at all. Cosines are effectively correlations between 
numeric expressions of text, and, in this research, cosines are our primary method for 
comparing write-in statements to published O*NET tasks and to each other.  

We noted earlier that we used “pre-trained” embeddings, which means the embeddings were 
produced by others who analyzed generic text rather than text specific to our research context. 
Pre-trained embeddings are convenient because they are based on a large corpus of text (often 
obtained from web sources) and can be applied to research contexts in which there is 
insufficient text to derive custom embeddings. In our case, we used embeddings from the 
Global Vectors for Word Representation (GloVe; Pennington, Socher, & Manning, 2014) 
algorithm trained on a “common crawl” of the internet consisting of 42 billion tokens (i.e., word-
like pieces of text). These GloVe embeddings represent 1.9 million unique tokens, each 
summarized as a 300-dimension numeric vector. Large collections of pre-trained embeddings 
like GloVe include most words in the English language and are therefore quite useful for 
numerically encoding novel pieces of text, such as the write-in statements that are the focus of 
this research. Although GloVe embeddings have 300 dimensions, we discovered that three of 
these dimensions are extreme outliers that have biasing effects on cosines. Other researchers 
have found the same oddities in these data (Lee, Ke, Huang, & Chen, 2016), so we used 297 of 
the 300 GloVe dimensions in our analyses and omitted GloVe dimensions 7, 97, and 225. 

GloVe embeddings are encoded at the level of individual words, so we aggregated word-level 
vectors into statement-level vectors using a differential weighting strategy known as TF-IDF 
(short for “term frequency–inverse document frequency”) weighting. TF-IDF weighting is a 
method for quantifying the importance of words as a function of both (a) their term frequencies 
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(“TF”), such that words that are used more often within a given document are more important to 
that document, and (b) their inverse document frequencies (“IDF”), such that words that are 
used in more documents are less important, overall, by virtue of being commonplace.2 TF-IDF 
weights are the product of TF and IDF metrics, which allows these weights to balance the goals 
of quantifying importance based on word usage within and between documents. In this 
research, each published task or write-in statement was considered a separate document.  

Published O*NET Tasks 

Each cycle of write-in statements was matched with a database containing published task 
statements from the period in which the write-in statements were collected.3 For the database of 
published O*NET tasks with which the write-in statements would be compared, we generated 
task-level embeddings by (1) extracting the GloVe embeddings for the words in each task, (2) 
computing TF-IDF weights for all published tasks, and (3) aggregating the word-level 
embeddings for each task into a TF-IDF weighted average. This process yielded one 297-
dimension vector per published task. 

Write-In Statements 

We applied the same general process described above for published O*NET tasks to write-in 
statements, but with two modifications to the ways in which GloVe embeddings were aggregated. 
The first important difference affected how we computed TF-IDF weights. When TF-IDF weights 
are applied to novel text (e.g., write-in statements) in settings where a curated corpus of text 
already exists (e.g., the database of published O*NET tasks), it is common for the TF portion of 
the weights to be derived from the novel text while the IDF portion of the weights is borrowed from 
the curated corpus. By deriving IDF weights from a curated corpus, this method establishes a 
meaningful referent for cross-document word usage. We followed this practice and derived IDF 
weights based on the complete corpus of published O*NET tasks so that the IDF portion of the 
TF-IDF weights would not differ across applications of this method (e.g., the same IDF weights 
apply to the write-in tasks analyzed in this research as would apply to a collection of write-in 
statements analyzed in a future cycle). For words that appeared in write-in statements that were 
not part of the published-task corpus, we assigned an IDF weight of e (i.e., 2.718282), which gives 
them high-importance on the IDF side of our TF-IDF weighting scheme due to their novelty. 

The other difference affected how we handled misspelled words. As noted earlier, we down-
weighted word substitutions as a function of how much the substitute text differed from the 
misspelled text it replaced. Thus, we computed the operational weights we used to aggregate 
word-level embeddings into statement-level embeddings as: 

𝑤𝑤𝑡𝑡𝑖𝑖 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹𝑖𝑖 × �1 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝐽𝐽𝑊𝑊𝑖𝑖� 
 

 
2 We quantified TF as the proportion of times a given word was used within a document and we quantified 
IDF as the natural logarithm of the total number of documents divided by the number of documents 
containing the word. 
3 The published task lists used in this research ranged from December 2002 (Cycle 1) to January 2019 
(Cycle 20). Within the O*NET Database Releases Archive (National Center for O*NET Development 
2020b) this corresponds with the O*NET 4.0 database through the O*NET 24.0 database. Reports 
describing “cycle” updates for the Skills and Abilities domains can be found at 
https://www.onetcenter.org/research.html?c=KSA. 

https://www.onetcenter.org/db_releases.html
https://www.onetcenter.org/research.html?c=KSA
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where i indexes write-in statements, wt represents the operational weight, TFIDF represents the 
TF-IDF weight, and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝐽𝐽𝐽𝐽 represents the Jaro-Winkler string distance between original and 
substitute text (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝐽𝐽𝐽𝐽 coefficients range from 0 to 1, where 0 indicates no difference 
between pieces of text; if text was unchanged by the spell-checking process, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝐽𝐽𝐽𝐽 was 
set to 0). We used these operational weights to compute the weighted average of word-level 
embeddings for each write-in statement. 

Question 1: Is the write-in statement an acceptable task? 

To answer question 1, we developed a strategy to predict the acceptability of write-in 
statements using a combination of NLP and machine learning methods. The result of this 
synthesis was a supervised machine learning procedure in which characteristics of statements’ 
text can be used to estimate the probability that a write-in statement is acceptable as a task.  

We treated our model-development approach as a two-stage process. In the first stage, we 
developed a set of features (i.e., predictors) based on our understanding of the data and our 
experience with previous NLP-oriented machine learning efforts. We used those features to 
train several different machine learning models, compared the models’ performance, and 
selected a model to use as a started point for the second stage. The second stage involved 
consulting with subject matter experts (SMEs; in this case, HumRRO analysts experienced with 
the Emerging Task ratings) about the model’s classification errors, brainstorming a set of 
additional features to resolve deficiencies in the original model, and training another round of 
models with the expanded set of features. This effort was centered around the prediction of a 
binary criterion representing analysts’ decisions about whether write-in statements were 
acceptable as tasks, or unacceptable as tasks (the base rate of acceptability was 51.4% in the 
initial stage and 50.9% in the revision stage, with the differences in base rates occurring due to 
modifications to the data sets used in our analyses). We summarize both stages of this effort in 
the following subsections. 

Initial Modeling Effort 

In the first stage of our model-building process, we engineered a set of features intended to 
summarize a variety of text attributes we expected to be related to acceptability. This set 
included features such as summaries of write-in statements’ similarity to published O*NET 
tasks, the statements’ embeddings, text complexity/readability metrics, and part of speech 
usage. The full feature set consisted of: 

• Distributional summaries of cosines between statements and published tasks (mean, 
median, SD, min, and max) 

o Each write-in statement’s embedding for a given O*NET-SOC was compared to 
the embedding of each task for that O*NET-SOC published at the time the 
statement was originally evaluated by analysts, which resulted in a distribution of 
cosines for each statement. We used the mean, median, standard deviation, 
minimum, and maximum cosines of each such distribution as a feature.  

• Statement-level GloVe embeddings (297 dimensions) 

o In addition to the distributions of cosines, we included statements’ aggregate 
GloVe embeddings as features to capitalize on any indicators of acceptability the 
embeddings may contain. This added a lot of features to our set, but we used 
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cross-validation techniques when we trained our models to avoid potential 
problems due to overfitting/overlearning. 

• Complexity/readability indices 

o We calculated a variety of readability metrics to account for how write-in 
statements’ complexity affects the probability of being acceptable as a task: 

 Word count 
 Character count 
 Number of syllables 
 Number of polysyllables 
 Average number of characters per word 
 Average number of syllables per word 
 Flesch-Kincaid reading level 
 Flesch-Kincaid reading ease 
 Coleman-Liau index 
 Automated readability index 
 Gunning fog index 
 SMOG grade level 

• Part of speech frequencies (counts of verbs, nouns, adjectives, etc.) 

• Job family dummy variables 

• Proportion and frequency of words without embeddings (after spelling corrections were 
made) 

• Dummy variable indicating whether a write-in statement matched a known low-effort 
response (e.g., “yes, “no,” “N/A,” “I don’t know,” “I have no idea”) 

 
We trained three types of machine learning models to predict the acceptability of write-in 
statements: elastic net multinomial logistic regression (ENMLR), random forests (RF), and 
gradient boosting machines (GBM). Each of these methods uses hyperparameters to set 
constraints on the parameters the models estimate to generate predictions. We offer brief 
descriptions of the methods and their hyperparameters below. We used R (R Core Team, 2020) 
for all our analyses.  

Elastic Net Multinomial Logistic Regression (ENMLR) 

ENMLR is a form of regularized regression that aims to boost the generalizability of model 
predictions by blending the penalization functions from the ridge and LASSO regression 
methods. This prevents model coefficients from arbitrarily becoming too large (as can happen 
when predictors exhibit multicollinearity) while allowing the coefficients for unimportant 
predictors to be set to zero so that they effectively drop out of the model. ENMLR uses two 
hyperparameters: lambda (the magnitude of the regularization penalty) and alpha (the blending 
parameter used to combine the penalties, where 0 = pure ridge and 1 = pure LASSO). We 
tested 100 lambda values for that were equally spaced from 0.00001 to 1 and we tested alpha 
values from 0 to 1 in increments of .1. We used the glmnet package for R (Friedman, Hastie, & 
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Tibshirani, 2010) to train our ENMLR models and we standardized all features to ensure they 
satisfied the assumptions of ridge regularization. 

Random Forests (RF) 

RF is a tree-based model in which random subsets of predictors are selected to build decision 
trees that make up a “forest.” Each tree uses its predictors to classify observations into 
categories and the outcomes of all the trees in the forest are tallied in a vote-counting 
procedure. The overall model generates predictions by assigning each observation to the 
category for which it received the most votes. Compared to the other methods we used, 
hyperparameter tuning is much less important for RF models; aside from generating a large 
number of trees with a reasonable number of predictors sampled for each tree, tuning 
hyperparameters generally offers little improvement in prediction for RF models. We trained 
models using 300 trees with 20 predictors per tree and used the randomForest package for R 
(Liaw & Wiener, 2002) to train our RF models. 

Gradient Boosting Machines (GBM) 

GBM is also a tree-based model, but it uses “boosting” methods to make predictions rather than 
relying on a vote-counting procedure. In machine learning, individual decision trees like those 
used in RF are known as “weak learners” because they produce predictions that weakly 
correspond to observations’ labeled classes. By contrast, a “strong learner” is a classifier that 
generates predictions that correspond closely to the observations’ labeled classes. Vote 
counting in RF models uses insights drawn from many weak learners to classify observations, 
with the goal of using enough trees to average out their errors. GBM models, however, attempt 
to convert weak learners to strong ones by learning from their mistakes: Each tree added to a 
GBM model consists of a random subset of predictors and attempts to refine the predictions of 
previous trees so as to reduce the errors made by the overall model. We tested GBMs with 50 
to 300 trees in increments of 50 and interaction depths from 1 to 5 (interaction depth refers to 
the number of splits performed within a tree); we held the minimum number of observations per 
node of a tree constant at 10 and we set shrinkage (i.e., the learning rate) to .1. We used the 
gbm package for R (Greenwell, Boehmke, Cunningham, & GBM Developers, 2020) to train our 
GBM models. 

Model Training and Evaluation 

We evaluated all our models using five-fold cross-validation, with an additional 10-fold cross-
validation process used to tune hyperparameters within each of the five primary folds. We used 
a grid search method to tune all hyperparameters, such that all possible combinations of 
hyperparameters were evaluated before selecting the best-performing combination to use in 
model training based on overall hit-rate accuracy. We used the caret package for R to manage 
our model-training and cross-validation workflow. 

A high-level summary of model fit for our initial model-building phase is shown in Table 1. 
Compared to a logistic regression model featuring a random normal variable, the GBM, RF, and 
ENMLR models trained on all features performed similarly, although the RF model was slightly 
less accurate than the other two on all metrics.4 Given the similarity in performance among 

 
4 The performance of the RF model could be due how we handled its hyperparameters. However, the 
performance of RF relative to GBM and ENMLR in this research is consistent with patterns we have 
observed in previous research where RF hyperparameters were selected through substantial tuning.  
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machine learning methods for these data, we chose to rely on ENMLR for subsequent model-
building efforts because it is the most transparent model type. Whereas GBM and RF generate 
predictions by running feature data through hundreds of trees in a black-box way, ENMLR 
produces a simple vector of log-linear regression coefficients that are simple to examine and 
implement. 

Table 1. Summary of Fit Statistics for Machine Learning Models in Initial Modeling Effort 
Addressing Question 1 

Method Features k AUC PBIS Acc MCC 

Baseline Model       

Logistic Regression Random normal variable 1 .50 .00 .51 --- 

Focal Models       

GBM All features 474 .77 .48 .70 .40 

RF All features 474 .75 .43 .69 .38 
ENMLR All features 474 .77 .47 .70 .40 

All features without all part of speech variables 340 .76 .46 .70 .39 

Cosines and embeddings 302 .75 .43 .68 .37 

Cosines only 5 .68 .31 .63 .26 

Embeddings only 297 .74 .41 .68 .35 
Note. N = 133,654 write-in statements (51.4% judged acceptable); AUC = area under ROC curve; PBIS = point-
biserial correlation between predicted probabilities and actual acceptability; Acc = Accuracy (overall proportion of 
correct classifications); MCC = Matthews correlation coefficient (phi coefficient for actual and predicted status). 
 
 
We trained additional ENMLR models using subsets of features to understand which features 
were driving predictive accuracy and which features might be unnecessary. As shown in Table 
1, omitting part-of-speech frequency variables had a negligible impact on model fit, and the 
model in which the only features were cosine descriptive statistics and embeddings performed 
similarly to the RF model trained on all features. The embeddings appear to be an important 
driver of predictive accuracy, with the cosine descriptive statistics adding a modest increment in 
model fit. Based on these results, we tentatively recommended using an ENMLR model trained 
on all features except for part of speech variables to predict task acceptability. In the second 
stage of our approach to answering question 1, we sought to improve upon this recommended 
model by capitalizing on insights from SMEs.  

Revised Modeling Effort 

Our initial approach to predicting the acceptability of write-in statements yielded models with 
useful levels of predictive accuracy for three different machine learning methods. The features 
we included in the initial set of models were all based on ideas from an analysis plan we had 
constructed based on our understanding of the data and insights drawn from our previous NLP-
based machine learning research. That set of features provided us with a good starting point for 
predicting acceptability, but left enough room for improvement that we decided to engineer 
additional features to increase predictive accuracy. 

A model developed to mimic human judgments can often be improved by showing the model’s 
predictions to SMEs and soliciting their feedback about how to avoid the types of prediction 
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errors the model made. Based on this feedback, new features can be designed to capture the 
types of information the model was lacking—adding these new features to the model will ideally 
bring its predictions closer into alignment with expert judgments.  

We compiled lists of classification errors for our model’s false-positive errors (i.e., statements 
labeled unacceptable that the model predicted were acceptable) and false-negative errors (i.e., 
statements labeled acceptable that the model predicted were unacceptable) and showed these 
misclassified statements to two SMEs who were experienced HumRRO write-in statement 
analysts. We asked the SMEs to evaluate the misclassifications and identify quantifiable 
characteristics of the statements that could be encoded into features to help the model avoid 
making these types of errors in the future. Based on the SMEs’ feedback, we developed 
additional features to include in another round of model building: 

• Cosines between statements’ embeddings and the embeddings of the SOCs’ occupation 
titles  

• Dummy variable indicating whether statements consisted of a single word 

• Dummy variable indicating whether statements had both a verb and an object 

• Frequency of non-task terms (e.g., ability, knowledge, skill) 

• Frequency of “people words” (e.g., people, customer, client) 

• Frequency of vague verbs (e.g., check, manage, assist) 

• Dummy variable indicating whether there was only one verb that was also vague 

• Number of words in longest run of verbs in each statement (ignoring conjunctions) 

• Number of words in longest run of nouns in each statement (ignoring conjunctions) 
 
We also updated some of the features used in our initial models. Most notably, we used a 
different program to extract parts of speech because the new program produced broader 
categories that were more parsimonious for modeling (e.g., it used one category for verbs as 
opposed to using separate categories for the gerund form, past participle, etc.). By using 
broader categories to count parts of speech, we reduced the overall number of features while 
retaining the most useful distinctions among words’ part-of-speech labels.  

In addition to revising our feature set, we applied some new cleaning procedures to the data 
with the goal of improving the quality of observations on which the new models would be 
trained. Based on feedback from the analysts, we excluded statements consisting entirely of 
symbols (N = 25), known low-effort responses (N = 1,116), and single-word write-in statements 
that had been rated acceptable as tasks (i.e., clear human decision errors; N = 317) from our 
analysis data. We also identified 2,215 statements for which acceptability decisions were 
missing and, operating under the assumption that all acceptable statements would be explicitly 
labeled as such, coded these as unacceptable; these cases originated predominately from cycle 
3 (N = 2,202), suggesting a single-cycle difference in how acceptability decisions were 
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recoded.5 Altogether, these changes to the database resulted in a net increase of 757 write-in 
statements used in our analyses. 

We trained another round of models using our updated data sets. Once again, we fit a baseline 
logistic regression model with a random normal predictor and fit several ENMLR models that 
omitted sets of features we suspected were contributing little to predictions. We also re-trained 
our preferred ENMLR model from the initial model-building phase on the revised data set with 
revised part-of-speech features to evaluate whether the new features improved our accuracy. 
See Table 2 for a summary of these models. 

Adding our newly engineered features did relatively little to improve predictive accuracy and all 
candidate models performed similarly. Our model trained on the complete expanded feature set 
performed only marginally better than the preferred model from the initial stage; these models 
had the same AUC and accuracy, with the former demonstrating only a .01 increase in PBIS 
and MCC coefficients. Removing two large feature sets (part of speech variables and job family 
dummy variables) had very little impact on model performance, suggesting they are 
uninformative for identifying acceptable write-in statements. After omitting these uninformative 
features, our more parsimonious model had the same fit statistics as our preferred model from 
the initial phase.  

Table 2. Summary of Fit Statistics for Machine Learning Models in Revised Modeling 
Effort Addressing Question 1 

Features k AUC PBIS Acc MCC 

Baseline Models      

Random normal variable 1 .50 .00 .51 .00 
Preferred model from initial phase 
(All features without all parts of speech variables) 337 .76 .45 .69 .38 

Focal Models      

All features 361 .76 .46 .69 .39 

All features w/o part of speech variables 346 .76 .46 .69 .39 

All features w/o job families 340 .76 .45 .69 .38 

All features w/o (a) part of speech variables and (b) job families 325 .76 .45 .69 .38 
Note. N = 134,411 write-in statements (50.9% judged acceptable); AUC = area under ROC curve; PBIS = point-
biserial correlation between predicted probabilities and actual acceptability; Acc = Accuracy (overall proportion of 
correct classifications); MCC = Matthews correlation coefficient (phi coefficient for actual and predicted status). 
 
 
Figure 2 shows density distributions for the cross-validated predicted probabilities of 
acceptability for acceptable and unacceptable write-in statements. These distributions do 
demonstrate a useful magnitude of separation (a mean difference of 1.01 standard deviations); 
however, there is a substantial amount of overlap in the middle of the probability range, 
indicating that only cases toward the tails of the distributions can be classified with high levels of 
accuracy. Table 3 supports this, showing true positive rates (TPR), false negative rates (FNR), 

 
5 We subsequently re-evaluated this assumption and tested models in which we omitted statements that 
were missing acceptability decisions (revised total: 132,197 write-in statements; 51.8% judged 
acceptable). These models did demonstrate slightly better cross-validated fit than the models presented 
in this report, but the differences were quite small in magnitude (e.g., .01 on the various criteria). 
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true negative rates (TNR), and false positive rates (FPR) for probability thresholds ranging from 
.1 to .9 in increments of .1. For example, if statements with a probability of acceptability of .8 or 
greater were automatically retained as tasks, those classifications would correctly identify 17% 
of all acceptable statements and 96% of all unacceptable statements. Likewise, if statements 
with a probability of acceptability of .2 or lower were automatically rejected as unacceptable, 
those decisions would correctly identify 18% of all unacceptable statements and 98% of all 
acceptable statements. Jointly applying these two thresholds would help to identify the most 
obviously acceptable and unacceptable statements while making very few classification errors, 
leaving roughly 80% of the statements in the middle of the probability distribution for analysts to 
classify manually.  

 
 
Figure 2. Distributions of predicted probabilities of acceptability as a task for acceptable 
and unacceptable write-in statements. 
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Table 3. Accuracy Statistics for Varying Probability Cutoffs When Predicting Write-In 
Statement Acceptability 

Probability 
Cutoff Accuracy MCC TPR FNR TNR FPR Percentage  

Below Cutoff 

.1 .54 .19 1.00 .00 .07 .93 3.6% 

.2 .59 .28 .98 .02 .18 .82 9.7% 

.3 .64 .34 .93 .07 .34 .66 20.0% 

.4 .68 .38 .85 .15 .51 .49 32.9% 

.5 .69 .38 .72 .28 .67 .33 47.1% 

.6 .67 .36 .55 .45 .80 .20 62.3% 

.7 .62 .30 .35 .65 .90 .10 77.0% 

.8 .56 .22 .17 .83 .96 .04 89.7% 

.9 .51 .11 .04 .96 .99 .01 97.7% 

Note. N = 134,411 write-in statements (50.9% judged acceptable); Probability Cutoff = minimum predicted probability 
to be classified as unacceptable; Accuracy = overall proportion of correct classifications; MCC = Matthews correlation 
coefficient (phi coefficient for actual and predicted status); TPR = true positive rate (proportion of acceptable 
statements correctly classified); FNR = false negative rate (proportion of acceptable statements incorrectly classified); 
TNR = true negative rate (proportion of unacceptable statements correctly classified); FPR = false positive rate 
(proportion of unacceptable statements incorrectly classified); Percentage Below Cutoff = percentage of statements 
classified as unacceptable. 
 
 

Summary of Question 1 

We trained machine learning models to predict whether write-in statements are acceptable as 
tasks, using NLP-based embeddings, lexical features, and similarity metrics as our key 
predictors. We found that three machine learning methods (ENMLR, GMB, and RF) performed 
similarly well at classifying write-in statements and all three produced predictions with useful 
levels of accuracy. Of these methods, we identified ENMLR as the most promising option for 
operationally predicting statements’ acceptability because it produces transparent and simple-
to-use coefficients. We used feedback from write-in statement analysts to engineer additional 
features and, although these new features did not markedly improve prediction, we were able to 
limit our features to a more parsimonious set that maintained the level of predictive accuracy 
observed in much larger models.  
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Question 2: Is the statement completely redundant with an existing  
task for a given O*NET-SOC occupation? 

To answer question 2, we developed a strategy to predict whether acceptable write-in statements 
were completely redundant with O*NET tasks that had been published at the time the write-in 
statements were analyzed. All the data used to address question 2 were cleaned the same way as 
in our revised modeling effort for question 1. The criterion of interest in answering question 2 was a 
binary variable representing analysts’ decisions about whether write-in statements judged as 
acceptable were completely redundant with existing O*NET tasks (the base rate of not-completely-
redundant statements was 83.8%). Although analysts can classify write-in statements as partially 
redundant, our modeling effort was limited to predicting a lack of complete redundancy with 
published O*NET tasks; therefore, for economy of language, we refer to completely redundant 
statements as “redundant” and not-completely-redundant statements as “unique.” 

Like our approach to answering question 1, we used machine learning methods to address this 
question. However, given that predicting uniqueness is a more narrowly defined activity than 
predicting acceptability as a task (i.e., uniqueness is based on explicit comparisons with 
published tasks to determine whether statements overlap significantly with tasks, whereas the 
matter of acceptability is determined by a wider variety of evaluative factors), our feature set for 
this modeling effort was likewise narrower in scope.  

We began with a simple logistic regression model in which uniqueness was regressed on write-
in statements’ maximum cosines with published tasks. The intention of this model was to 
determine whether write-in statements’ magnitude of cosine similarity with their most similar 
published task was indicative of their redundancy status. We found that this model performed 
better than a baseline model in which the only predictor was a random normal variable, but its 
cross-validated probability estimates were only modestly correlated with write-in statements’ 
actual uniqueness decisions (r = .17).  

We aimed to improve upon the predictive accuracy of our initial logistic regression model by 
including additional descriptive statistics of statements’ cosine distribution as features and once 
again using ENMLR. We regressed uniqueness decisions on the mean, median, SD, minimum, 
and maximum of statements’ cosines with their SOCs’ published tasks. This broader set of 
descriptive statistic features only improved prediction by a small amount (r = .19, Δr = .02; see 
Table 4 for more fit information). However, there were no additional features available to index 
statements’ overlap with published tasks, so we proceeded to examine the distributions of 
probabilities predicted by the model.   

Table 4. Summary of Fit Statistics for Machine Learning Models Addressing Question 2 
Features k AUC PBIS Acc MCC 

Baseline Model      

Random normal variable 1 .50 .00 .84 --- 

Focal Models      

Max cosine 1 .62 .17 .84 .01 

All cosine descriptives 5 .64 .19 .84 .04 
Note. N = 68,730 acceptable write-in statements (83.8% judged unique); AUC = Area under ROC curve;  
PBIS = point-biserial correlation between predicted probabilities and actual uniqueness; Acc = accuracy  
(overall proportion of correct classifications); MCC = Matthews correlation coefficient (phi coefficient for  
actual and predicted status). MCC was undefined for the random normal variable model. 
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Figure 3 shows the distributions of cross-validated predicted probabilities of being unique for 
redundant statements and unique statements. Unlike Figure 2 where the contrasting probability 
distributions showed useful magnitudes of separation, the distributions in Figure 3 overlap 
substantially. The moderate degree of separation between the distributions (a mean difference of 
.53 standard deviations) implies that only the tails of the distributions are likely to be useful for 
cleanly classifying statements as redundant or unique (e.g., there are substantially more redundant 
statements with predicted probabilities below .7 than there are unique statements, but the distance 
between the distribution closes quickly as the probability threshold increases to .8). Table 5 shows 
the true positive rates (TPR), false negative rates (FNR), true negative rates (TNR), and false 
positive rates (FPR) for probability thresholds ranging from .50 to .95 in increments of .05. 
 

 
Figure 3. Distributions of predicted probabilities of uniqueness for unique and redundant 
write-in statements. 
 
 
The model we developed to answer question 2 was less successful at prediction/classification than 
the model we developed to answer question 1. However, our model for predicting statements’ 
uniqueness does provide some modest indication of the likelihood that a given statement is unique, 
so it can still help to streamline the process of analyzing write-in statements. Although the model is 
not accurate enough to be relied upon for automatic statement classification, we plan to pass its 
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predicted probabilities along to analysts in the redesigned analysis process to give them an initial 
signal about how much each statement’s text overlaps with tasks already on O*NET. 

Table 5. Accuracy Statistics for Varying Probability Cutoffs When Predicting Write-In 
Statement Uniqueness 

Probability 
Cutoff Accuracy MCC TPR FNR TNR FPR Percentage  

Below Cutoff 
.50 .84 .04 1.00 .00 .00 1.00 0.1% 

.55 .84 .05 1.00 .00 .01 .99 0.2% 

.60 .84 .07 1.00 .00 .02 .98 0.6% 

.65 .84 .09 .99 .01 .04 .96 1.3% 

.70 .83 .12 .98 .02 .08 .92 3.4% 

.75 .80 .13 .93 .07 .18 .82 9.2% 

.80 .72 .15 .79 .21 .38 .62 23.6% 

.85 .54 .14 .51 .49 .68 .32 52.1% 

.90 .29 .10 .17 .83 .93 .07 84.7% 

.95 .17 .02 .01 .99 1.00 .00 99.3% 
Note. N = 68,730 acceptable write-in statements (16.2% judged unique); Probability Cutoff = minimum predicted 
probability to be classified as unique; Accuracy = overall proportion of correct classifications; MCC = Matthews 
correlation coefficient (phi coefficient for actual and predicted status); TPR = true positive rate (proportion of unique 
statements correctly classified); FNR = false negative rate (proportion of unique statements incorrectly classified); 
TNR = true negative rate (proportion of redundant statements correctly classified); FPR = false positive rate 
(proportion of redundant statements incorrectly classified); Percentage Below Cutoff = percentage of statements 
classified as redundant. 
 
 

Question 3: Are there enough unique statements that are sufficiently similar to 
one another to warrant the creation of a new task, or revision to an existing task? 

In contrast to our machine learning approaches to questions 1 and 2, we administered a 
judgment exercise to SMEs to answer question 3. This exercise was designed to identify the 
point at which pairs of write-in statements are no longer similar enough to each other to merit 
consideration for inclusion in the same task category. The goal was to obtain a cosine-metric 
threshold for write-in statement similarity that could be used to group write-in statements into 
preliminary task categories to inform the creation of new tasks.  

To generate the stimuli for the SME exercise, we computed the cosine similarities among all 
possible pairs of write-in statements for each SOC, which produced a total of 3,089,063 
pairwise comparisons. This volume of cosines was obviously impractical for a SME exercise, so 
we selected 1,000 write-in statement pairs to use in the exercise via stratified random sampling. 
We stratified the statement pairs into bands of cosine magnitudes spanning ranges of .1 (i.e., .9-
1.0, .8-.9, .7-.8, etc.; we grouped negative cosines and cosines from 0 to .1 in the same 
stratum), which ensured that write-in statement pairs of all levels of similarity were equally 
represented. We rank-ordered the statement pairs by their cosines and asked four HumRRO 
write-in statement analyst SMEs to identify the point in the list at which the preponderance of 
statement pairs were no longer sufficiently similar to each other to merit grouping them in the 
same task category (note that the analysts only saw the rank ordering of pairs; they did not see 
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the cosine similarity metrics). SMEs reported the ranks at which they established their 
thresholds, and we linked those ranks to the cosines on which they were based. 

The results of this exercise are summarized in Table 6. Three of the four SMEs provided very 
similar judgments, indicating that the threshold should be set around a rank of 320. When we 
mapped these ranks back to the distribution of cosines, we found that these three SMEs 
recommended a cosine threshold of about .67. SME number 4 was an outlier and recommend a 
rank threshold of 420, which corresponds to a difference of 100 ranks and a difference about 
.11 in the cosine metric relative to the other three SMEs. Given the consistency of judgments 
and the large difference with the outlying rater, we recommend a cosine threshold of .67 for 
grouping write-in statements into preliminary task categories. 

Table 6. Summary of Similarity Thresholds for Question 3 
SME 

Number 
Rank 

Threshold 
Cosine 

Threshold 
1 319 .673 
2 320 .673 
3 322 .669 
4 420 .561 

 
 

Process Improvements and Next Steps 

Based on the results of our modeling efforts and input from SMEs, we recommended several 
ways in which the write-in statement analysis process could be streamlined to reduce the 
burden on analysts and increase efficiency. The models we developed to answer questions 1 
and 2 will be included in the analysis process for future cycles and their predicted probabilities 
will be used to rank-order lists of write-in statements, with the intent of facilitating analysts’ 
reviews by indicating which statements are more likely to be (a) acceptable and (b) unique.  

We also plan to use conservative probability thresholds to pre-populate acceptable/unacceptable 
and unique/redundant decisions for analysts (e.g., statements in the top 10% of acceptability 
probabilities are provisionally labeled as acceptable, those in the bottom 10% are provisionally 
labeled as unacceptable, and those in the middle 80% are entirely up to analysts to classify). This 
approach will help to automatically label the easiest-to-classify statements, which will allow analysts 
to focus their reviews on the statements with middling probabilities while still permitting them to 
override the automatically generated decisions if they see a classification error. 

The SME-determined similarity threshold from our analysis of question 3 will be used to 
restructure the approach for grouping similar write-in statements into categories that inform the 
generation of new tasks. After analysts complete the streamlined activities for classifying 
acceptable and unique statements, the statements that were both acceptable and unique will be 
provisionally grouped into task categories based on their cosine similarity and analysts will edit 
and augment these categories while creating new categories as they see fit. 

These process improvements have exciting potential to reduce the cognitive complexity of 
judgments while capitalizing on efficiencies afforded by machine-aided classification. Analyst 
SMEs estimated that these changes will reduce their reviewing time by 30-40% and the 
improvements are also expected to facilitate the training process for new analysts. The revised 
process will be piloted in a future write-in statement review cycle.  
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Appendix A: Examples of Write-In Statements 

Analysts evaluate each write-in statement to determine whether it is acceptable as a task and, if 
it is acceptable, whether it is completely redundant or partially redundant with existing task 
statements for the O*NET-SOC in question. Write-in statements are only evaluated for partial 
redundancy if they are not completely redundant, and those judged to be neither completely 
redundant nor partially redundant are considered unique relative to the existing task list for the 
O*NET-SOC. Table B-1 shows the first 15 write-in statements in our database for O*NET-SOC 
11-1011.00: Chief Executives. The write-in statements in Table B-1 are in their raw, uncleaned 
form and offer two examples of the need to correct statements for spelling errors before 
performing NLP-based analyses (both “subordinants” and “affiliated” are misspelled).  

Table B-1. Example Write-In Statements for Chief Executives (O*NET-SOC: 11-1011.00) 

Write-In Statement Valid 
Task 

Completely 
Redundant 

Partially 
Redundant 

Teach internal classes to subordinants  Yes No No 

Teach university affilated management classes  Yes No No 

Engineering  No --- --- 

Direct sales effort  Yes No Yes 

Interact with customers  No --- --- 

Deal with human resource issues.  Yes Yes --- 

Build strategy for organization  Yes No Yes 
Edit, write & design corporate communications for employees, 
members & public  Yes No No 

Customer relations policy..  No --- --- 

Operational policies.  No --- --- 

Sales program to increase companies position in the market.  No --- --- 

Financial planning for budgets/prospects.  Yes No Yes 

Marketing strategies.  No --- --- 

Coordinate between departments on large projects.  Yes No Yes 

Virtual meetings with individual employers  No --- --- 
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Appendix B:  Current Write-In Statement Analysis Process 

 
Note.  In the diagram above, references to “SOC” should be interpreted 

as “O*NET-SOC”. 
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Appendix C:  Revised Write-In Statement Analysis Process 

Steps 1–6 of the workflow depicted in Appendix B were initially performed separately for each 
write-in statement (i.e., an analyst would go through those steps for one statement before 
moving on and applying it to another statement). The revised workflow makes use of our new 
machine learning models and reconfigures analysts’ tasks so that they apply each step of the 
new process to all write-in statements for given O*NET-SOC before moving on to the next step. 
This change is expected to (a) limit the number of times that analysts have to “switch gears” 
during their judgment tasks and (b) reduce the burden on analysts’ attentional resources.  

Step 1: Review all write-in statements for the assigned O*NET-SOC and determine which ones 
are acceptable as tasks and which are unacceptable as tasks. To facilitate review, write-in 
statements are pre-sorted by descending model-predicted probability of being acceptable. 
Write-in statements with very high (e.g., .90) or very low probabilities (e.g., .10) are provisionally 
labeled as acceptable or unacceptable, respectively, prior to the analyst’s review; the analyst 
may override any provisional classifications as they see fit.  

Step 2: For each write-in statement judged acceptable in Step 1, use a list of existing 
statements for the O*NET-SOC sorted by magnitude of cosine similarity to the write-in 
statement to (a) evaluate the write-in statement’s level of overlap with existing task statements, 
(b) classify it as unique, partially redundant, or completely redundant, and (c) if the statement is 
partially redundant, record the O*NET task number(s) of the task(s) with which it overlaps. To 
facilitate review, write-in statements are pre-sorted by descending model-predicted probability of 
being unique.  

Step 3: For the acceptable write-in statements that are not completely redundant with existing 
tasks, decide which write-in statements should be combined into a task category from which to 
synthesize a new task statement. 

Step 4: For write-in statements meeting criteria, write new task statements that (a) update 
existing task statements using information from partially redundant write-in statements or (b) 
consolidate information from write-in statements grouped within the same task category.6 

 
6 The criterion for developing new/revised task statements for Occupational Expert SOCs is four or more similar write-
in statements. For Incumbent SOCs, the criterion is five or more. 
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